

An introduction to the Katsuni
theorem and its application to

sandboxing and software emulation

Jonathan Brossard (Toucan System)

25/09/2013

Who am I ?

- Security researcher, publishing since 2005.

- Past research : vulnerabilities in BIOSes,
Microsoft Bitlocker, Truecrypt, McAfee Endpoint
(Defcon 2008), PMCMA debugger (Blackhat
USA 2011), « Rakshasa » supply chain
backdoor PoC (Blackhat 2012), 2 SAP notes
(2013).

- Speaker/trainer at HITB, CCC, Ruxcon...

- Co-founder of the Hackito Ergo Sum and
NoSuchCon research conferences (France).

Disclaimer : contains research

This was supposed to be a short research on
finding/exploiting a few cool low level bugs in
sandboxes.

It ended up leading to more questions than answers
on my understanding of what the industry is doing in
the AV/sandbox space.

If you have better understanding, I'd really like if you
took the time to explain me

(endrazine@gmail.com,+PGP).

mailto:endrazine@gmail.com

Disclaimer (rephrased)

WTF is the AV industry doing ? Well, I'm not so
sure I understand anymore …

But read the qemu source code, it's an
awesome source of knowledge on system
programming, compilers, binary translation and
plenty other things :)

What's hot in the AV industry in
2013 ?

AV industry : 2013 trends

- Desktop AV is essentially a thing of the past

- Focus moves technologies hopefully able to
« detect 0days »[1] like sandboxing.

=> The new cool thing is emulation and sandboxing.

[1] Don't laugh yet.

How it all started... (/story telling)

CVE-2013-0640
(Adobe Sandbox bypass)

Adobe Reader and Acrobat 9.x before 9.5.4,
10.x before 10.1.6, and 11.x before 11.0.02

allow remote attackers to execute arbitrary code
or cause a denial of service (memory

corruption) via a crafted PDF document, as
exploited in the wild in February 2013.

CVE-2013-0640
(Adobe Sandbox bypass)

Their « analysis » :

Here is the sequence of the ROP shellcode:

msvcr100!fsopen()

msvcr100!write()

mvvcr100!fclose()

kernel32!LoadLibraryA()

kernel32!Sleep()

Upon loading the malicious library, it will enter a long sleep and
ensure that the thread has not crashed because the whole stack in
the thread is already manipulated for creating a ROP chain.

Their « analysis » :

Here is the sequence of the ROP shellcode:

msvcr100!fsopen()

msvcr100!write()

mvvcr100!fclose()

kernel32!LoadLibraryA()

kernel32!Sleep()

Upon loading the malicious library, it will enter a long sleep and
ensure that the thread has not crashed because the whole stack in
the thread is already manipulated for creating a ROP chain.

Their « analysis » :

Here is the sequence of the ROP shellcode:

msvcr100!fsopen()

msvcr100!write()

mvvcr100!fclose()

kernel32!LoadLibraryA()

kernel32!Sleep()

Upon loading the malicious library, it will enter a long sleep and ensure that the thread
has not crashed because the whole stack in the thread is already manipulated for
creating a ROP chain.

=> In trivial english, this is called bullshitting. They clearly have no idea what the
exploit is trying to do here.

What I believe really happens in this
case (wild guess)

Sleep 5 minutes to attempt bypass sanboxing
detection :)

After all, it's a hardened exploit, found in the
wild and the first of its kind to bypass Adobe
sandboxing technology...

Limits of such technologies (imho)

- Good at finding artefacts (it's still « something »).

- Pretty bad at understanding what is actually
happening inside the exploit.

That being said...

The raise of sandboxes...

The raise of sandboxes...

The raise of sandboxes...

The raise of sandboxes...

Note to self : I don't find quite reasonable to add
to your corporate network something nobody

really understands.

Note : lack of third party assessment

Note : lack of third party assessment

Note : lack of third party assessment

Note : lack of third party assessment

The whole concept of sandboxing vendors is to
not have the perceived enemy take a look at the

technology. Ok, agreed.

Note : lack of third party assessment

- It also means no third party assessment has been done by the
security community...

- In real life, having software due dilligence done by the community
has proved to be a good thing for the quality of the said software.

- See similar requests from Tavis Ormandi and Pipacs to have a
look at Bromium's technology...

Note : well, they're not Bromium clients, so we have a problem... as
an industry, really.

Note 2 : Afaik, Bromium has researchers like Nergal and Jarred
Demott. Who of this caliber works for FireEye really ?

Room for problems
(research leads)

Room for problems part I :
general design/architecture

What's the trend, perceived
objective like

Current « genious » idea :

- Correlate/share more data to create information
asymetry.

- To do that, most (all I've seen allow it, at least in non
default mode) solutions now allow a malware to
connect back to the internet[*].

[*] Idea being to correlate DNS/binary checksum
informations over « campaigns » of attacks in the
time.

A few facts on this...

- The whole corporate strategy over the past 15
years has been to segregate LANS, DMZs and the
internet.

- Now you give a temporary shell to the attacker at
network perimeter (proxies, mail gateways,
wherever such sandboxing solutions exist)...

- … and what happens to your DNS ? To your http
proxy cache ?

The Katsuni-Kaminsky attack
(having it both ways)

- Attacker can run a malware inside a sandbox.

- Sandbox allows attacker to connect back to the internet.

- Corporate DNS server is used as a recursive DNS
server.

- Attacker has it both ways and can synchronize arbitrary
spoofed packets emission from both inside and outside
the network.

=> That's gonna be very « safe » for sure...

Not to mention...

- What happens if the malware, from inside the
sandbox manages to attack other networks (say
crowdstrike !) ?

- What happens if the malware can send back a
modified copy of itself to the same network (smtp?)
for more analysis, and more sandbox cpu time ?

=> It's all about implementation details really.

Is this « wormable » (yet) ?

- FireEye claims to work with 30 % of the TOP 100
Companies. That makes it not so hard to find...

- Their strategy is to synchronize malware information
sharing... (allow exploits to drop exes on the
sandboxes... ?!?)

- They cover you « 360 », from mail gateways to http
proxy file downloads, etc.

- Ok, so how exactly do you prevent one malware to get
endless free execution time inside your different
sandboxes around the world ?

Room for problems part II :
Turning lame bugs into sandbox

Oracles

The problem

- Many online malware scanning engines run
qemu (+ some various instrumentation and
automation custom software)

- User doesn't get to see anything from the
scanning process.

- Now, what if an attacker has a qemu lame DoS
or endless loop PoC ?

Turning lame bugs into sandbox
Oracles

(aka : hacking online malware analysis tools... hrm)

- Attacker wants to perform an arbitrary
computation inside the sandbox whose output is
a binary result (eg : RIP < 0x1234).
- Attacker produces a malware that performs
this test, and then crashes (or enters endless
loop) the sandbox, leading to an observable
error (no malware reported, possibly error
message if online service). Otherwise, the
malware performs a « dodgy » action likely to
be reported (download some page from the
internet).

And therefore...

Extention of this attack to combine this with an
online C&C in case the malware can gain
infinite CPU time is left as an exercise to the
reader.

And while we're at it...

Since the malware could very well embed SSL
private certificates to connect back to the C&C,
sniffing this trafic doesn't give the observer any
clue about what the malware is actually sending
back.

Room for problems part III :
Such bugs do happen...

What degrees do projects like Xen
or qemu really have in terms of

security ?

A fair question is the relative maturity of such
technology, not when it comes to support legacy
Oses or current Oses, but hostile malware trying
to hurt them.

Exempli gratia : typical bugs reported
(complexity, software maturity : format
strings/symlinks or complex overflows ?)

 x86_emulate: MOVSXD must read
source operand just once

(Xen Unstable, 21/09/2013)

Ok, so you're at miscomputing EIP on basic
instructions such as MOVSXD (used in every
single binary, or about that)...

Note : this is totally exploitable imho btw.

How does that rank compared to
real cpu bugs ?

That was in 1997... The instruction is far less
used (CMPXCHG8B – compare and exchange
8 bytes)

Room for problems part IV :
exploit hardening and orders of

magnitude

Let's count

- An intel instruction is typically 3 bytes big

- Adobe reader 11.0 has dlls Mbytes big (28M AcroRd32.dll). Total
mapping of exe/dll is 64 Mb on disk (including all sections).

- Assuming a uniform distribution, every 3-byte sequence has an equal
probability of 1/16777216 to occur (mind CISC arch btw : no need to
start with real instruction).

- Assuming 64Mb of executable mapping, that means each 3-byte
sequence would appear 67108864/16777216 = 4 times.

= > Practically, if an attacker knew a few malicious instructions, they
would find them in the mapping of an exploited binary (presence inside a
proper usable ROP gadget sequence isn't a given, need better model).

Qemu internals

Binary translation in 1 slide

- Concept somewhat similar to UBQT (C.
Cifuentes), takes a binary, translates it to IR. But
then executes it on a virtual cpu instead of
outputing a binary on a specific target.

- Virtual cpu has very few instructions (~40).

- Very generic, very portable, very fast.

- Many arch supported (ARM, MIPS, SPARC,
PPC, …)

Qemu supports two modes

- System (full) virtualization

- Kernel emulation (wine/Windows, linux).

While many of current implementations are likely
to be using the first flavour, we'll focus on the later
one, which promises great speed enhancements
– so people are going to use just that imho- , and
a much greater attack surface... ;)

Qemu architecture

Understanding binary translation &
memory sharing

Party time !!

Qemu regression tests...

Demos

Conclusion

Interresting technologies. Cool hacking tools, usefull for researchers.

There is room for massive security problems, the devil being in the
details. Imho, maybe not ready for Enterprise grade deployment
though (remember I have not seen most of those products !).

No such a thing as third party assessment afaict.

From a strict game theory pov, your best interrest is probably to
have others use that, but stay away from such technologies...

The Katsuni-Grothendieck theorem
applied to silver bullet 0day

sandboxing :

« You can't have it both ways ! »

Thanks for inviting me.

Questions ?

